Details

Title Fundamental statistical methods for analysis of Alzheimer's and other neurodegenerative diseases
Creators Irimata Katherine E.,
Other creators Wilson Jeffrey ; Dugger Brittany N.
Collection Электронные книги зарубежных издательств ; Общая коллекция
Subjects Alzheimer's disease. ; Biometry. ; Nervous system — Degeneration. ; Statistics. ; Statistics as Topic ; Neurodegenerative Diseases ; Alzheimer Disease ; Biometry ; Maladie d'Alzheimer. ; Biométrie. ; Statistiques. ; biometrics. ; EBSCO eBooks
Document type Other
File type PDF
Language English
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key on1144942531
Record create date 6/4/2019

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet

"This book explains statistical techniques commonly used in analyzing data for Alzheimer's and other neurodegenerative diseases, and it presents examples from real-world applications in an effort to make the techniques useful for professionals and students. The book leads readers through the steps of conducting multivariate analyses while adjusting for correlation or the hierarchical structure of data in prediction and inferences. Techniques such as spatial analysis, Bayesian analysis, and time-dependent covariates are included. Several data sets from the National Alzheimer's Coordinating Center are analyzed with statistical software commonly used by Alzheimer's researchers, and the results are shown to readers by way of illustration"--.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous
  • Contents
  • Foreword
  • 1. Introduction to Statistical Software and Alzheimer’s Data
  • 2. Review of Introductory Statistical Methods
  • 3. Generalized Linear Models
  • 4. Hierarchical Regression Models for Continuous Responses
  • 5. Hierarchical Logistic Regression Models
  • 6. Bayesian Regression Models
  • 7. Multiple-Membership Models
  • 8. Survival Data Analysis
  • 9. Modeling Responses with Time-Dependent Covariates
  • 10. Joint Modeling of Mean and Dispersion
  • 11. Neural Networks and Other Machine Learning Techniques for Big Data
  • 12. Case Study
  • Acknowledgments
  • References
  • Index
    • A
    • B
    • C
    • D
    • E
    • F
    • G
    • H
    • I
    • J
    • K
    • L
    • M
    • N
    • O
    • P
    • Q
    • R
    • S
    • T
    • U
    • V
    • W
    • Z

Access count: 0 
Last 30 days: 0

Detailed usage statistics