Details

Title Google's PageRank and beyond: the science of search engine rankings
Creators Langville Amy N. ; Meyer (Carl Dean)
Imprint Princeton [N.J.]: Princeton University Press, [c2012]
Electronic publication (Norwood, Mass. : Books24x7.com [generator])
Collection Электронные книги зарубежных издательств ; Общая коллекция
Subjects Web sites — Ratings and rankings — Mathematics. ; Web search engines. ; Internet searching — Mathematics. ; World Wide Web — Subject access — Mathematics. ; LANGUAGE ARTS & DISCIPLINES / Library & Information Science / General ; EBSCO eBooks
Document type Other
File type PDF
Language English
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key ocn815649065
Record create date 9/21/2012

Allowed Actions

pdf/310271.pdf
Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network
epub/310271.epub
Action 'Download' will be available if you login or access site from another network
Group Anonymous
Network Internet
Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous
  • Cover
  • Contents
  • Preface
  • Chapter 1. Introduction to Web Search Engines
    • 1.1 A Short History of Information Retrieval
    • 1.2 An Overview of Traditional Information Retrieval
    • 1.3 Web Information Retrieval
  • Chapter 2. Crawling, Indexing, and Query Processing
    • 2.1 Crawling
    • 2.2 The Content Index
    • 2.3 Query Processing
  • Chapter 3. Ranking Webpages by Popularity
    • 3.1 The Scene in 1998
    • 3.2 Two Theses
    • 3.3 Query-Independence
  • Chapter 4. The Mathematics of Google’s PageRank
    • 4.1 The Original Summation Formula for PageRank
    • 4.2 Matrix Representation of the Summation Equations
    • 4.3 Problems with the Iterative Process
    • 4.4 A Little Markov Chain Theory
    • 4.5 Early Adjustments to the Basic Model
    • 4.6 Computation of the PageRank Vector
    • 4.7 Theorem and Proof for Spectrum of the Google Matrix
  • Chapter 5. Parameters in the PageRank Model
    • 5.1 The α Factor
    • 5.2 The Hyperlink Matrix H
    • 5.3 The Teleportation Matrix E
  • Chapter 6. The Sensitivity of PageRank
    • 6.1 Sensitivity with respect to α
    • 6.2 Sensitivity with respect to H
    • 6.3 Sensitivity with respect to v[sup(T)]
    • 6.4 Other Analyses of Sensitivity
    • 6.5 Sensitivity Theorems and Proofs
  • Chapter 7. The PageRank Problem as a Linear System
    • 7.1 Properties of (I – αS)
    • 7.2 Properties of (I – αH)
    • 7.3 Proof of the PageRank Sparse Linear System
  • Chapter 8. Issues in Large-Scale Implementation of PageRank
    • 8.1 Storage Issues
    • 8.2 Convergence Criterion
    • 8.3 Accuracy
    • 8.4 Dangling Nodes
    • 8.5 Back Button Modeling
  • Chapter 9. Accelerating the Computation of PageRank
    • 9.1 An Adaptive Power Method
    • 9.2 Extrapolation
    • 9.3 Aggregation
    • 9.4 Other Numerical Methods
  • Chapter 10. Updating the PageRank Vector
    • 10.1 The Two Updating Problems and their History
    • 10.2 Restarting the Power Method
    • 10.3 Approximate Updating Using Approximate Aggregation
    • 10.4 Exact Aggregation
    • 10.5 Exact vs. Approximate Aggregation
    • 10.6 Updating with Iterative Aggregation
    • 10.7 Determining the Partition
    • 10.8 Conclusions
  • Chapter 11. The HITS Method for Ranking Webpages
    • 11.1 The HITS Algorithm
    • 11.2 HITS Implementation
    • 11.3 HITS Convergence
    • 11.4 HITS Example
    • 11.5 Strengths and Weaknesses of HITS
    • 11.6 HITS’s Relationship to Bibliometrics
    • 11.7 Query-Independent HITS
    • 11.8 Accelerating HITS
    • 11.9 HITS Sensitivity
  • Chapter 12. Other Link Methods for Ranking Webpages
    • 12.1 SALSA
    • 12.2 Hybrid Ranking Methods
    • 12.3 Rankings based on Traffic Flow
  • Chapter 13. The Future of Web Information Retrieval
    • 13.1 Spam
    • 13.2 Personalization
    • 13.3 Clustering
    • 13.4 Intelligent Agents
    • 13.5 Trends and Time-Sensitive Search
    • 13.6 Privacy and Censorship
    • 13.7 Library Classification Schemes
    • 13.8 Data Fusion
  • Chapter 14. Resources for Web Information Retrieval
    • 14.1 Resources for Getting Started
    • 14.2 Resources for Serious Study
  • Chapter 15. The Mathematics Guide
    • 15.1 Linear Algebra
    • 15.2 Perron–Frobenius Theory
    • 15.3 Markov Chains
    • 15.4 Perron Complementation
    • 15.5 Stochastic Complementation
    • 15.6 Censoring
    • 15.7 Aggregation
    • 15.8 Disaggregation
  • Chapter 16. Glossary
  • Bibliography
  • Index
    • A
    • B
    • C
    • D
    • E
    • F
    • G
    • H
    • I
    • J
    • K
    • L
    • M
    • N
    • O
    • P
    • Q
    • R
    • S
    • T
    • U
    • V
    • W
    • Z
pdf/310271.pdf

Access count: 1 
Last 30 days: 0

Detailed usage statistics

epub/310271.epub

Access count: 0 
Last 30 days: 0

Detailed usage statistics