Details

Title The handbook of microbial bioresources
Other creators Gupta Vijai Kumar ; Sharma (Gauri D.), ; Tuohy Maria G., ; Gaur Rajeeva
Organization C.A.B. International,
Collection Электронные книги зарубежных издательств ; Общая коллекция
Subjects Microbiology. ; Molecular biology. ; Microbiological Phenomena ; Microbiological Techniques ; Molecular Biology — methods ; Microbiology ; Molecular Biology ; Microbiologie. ; Biologie moléculaire. ; Anticancer properties. ; Bacterial diseases. ; Biofertilizers. ; Biofuels. ; Biological control. ; Biological control agents. ; Bioremediation. ; Biotechnology. ; Cosmetics. ; Endophytes. ; Enzyme activity. ; Enzymes. ; Feeds. ; Foods. ; Giardiasis. ; Infections. ; Listeriosis. ; Mycorrhizal fungi. ; Natural enemies. ; Parasites. ; Parasitoses. ; Plant pests. ; Prebiotics. ; Probiotics. ; Protozoal infections. ; EBSCO eBooks
Document type Other
File type PDF
Language English
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key ocn962177006
Record create date 7/8/2016

Allowed Actions

pdf/2415876.pdf
Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network
epub/2415876.epub
Action 'Download' will be available if you login or access site from another network
Group Anonymous
Network Internet

This book, inclusive of 39 chapters, provides a detailed discussion on the biotechnological methods and processes, as well as the industrial applications, of various microbial resources. Current use of these microbial resources in the medical (anti-cancer substances from bacteria), agricultural (i.e., mycorrhizal fungi, biofertilizers, insect pest control), food (i.e., probiotics, prebiotics), feed, cosmetic, biofuel, and bioremediation industries are highlighted, giving researchers in these various fields a valuable resource for the latest developments in microbial bioresources.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous
  • The Handbook of Microbial Bioresources
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Foreword
  • 1: Microbial Resources for Improved Crop Productivity
    • Abstract
    • 1.1 Introduction
    • 1.2 Microbes Promote Plant Growth and Nutrient Uptake
    • 1.3 Microbes Produce Plant Growth-regulating Substances
    • 1.4 Microbes Reinforce Plant Immunity
    • 1.5 Microbes Provide Protection from Abiotic Stress
    • 1.6 Current Challenges for Agricultural Applications of Microbes
    • Acknowledgements
    • References
  • 2: The Contributions of Mycorrhizal Fungi
    • Abstract
    • 2.1 Introduction
    • 2.2 Soil Amendments
    • 2.3 Morphology and Composition of Historical Black-C
    • 2.4 Mycorrhizal Plants and Biochar
    • 2.5 Mycorrhizal Plants and Compost
    • 2.6 Conclusion
    • Acknowledgements
    • Note
    • References
  • 3: Trichoderma: Utilization for Agriculture Management and Biotechnology
    • Abstract
    • 3.1 Introduction
    • 3.2 Biology of Genus Trichoderma
    • 3.2.1 Morphological characters of Trichoderma spp.
    • 3.3 Trichoderma as Biocontrol Agents
      • 3.3.1 Type of biocontrol mechanism
        • Antibiosis
        • Mycoparasitism
        • Competition
        • Fungistasis
    • 3.4 Trichoderma as a Source Organism for Useful Genes
      • 3.4.1 Progress in identification of Trichoderma genes
    • 3.5 Commercial Utilization
      • 3.5.1 Trichoderma in the textile industry
      • 3.5.2 Trichoderma in the pulp and paper industry
      • 3.5.3 Trichoderma in the food and livestock feed industries
      • 3.5.4 Use of Trichoderma in agriculture and impacts on plants
        • Colonization of the plant root
        • Trichoderma as a biofertilizer
        • Trichoderma advances plant development
        • Trichoderma induces plant resistance to pathogens
    • References
  • 4: The Role of Bacillus Bacterium in Formation of Plant Defence: Mechanism and Reaction
    • Abstract
    • 4.1 Bacilli Preparations in Plant Growing and Defence
      • 4.1.1 Biofungicides: a short classification and general biological activity
      • 4.1.2 Bacilli biofungicides and their activity
    • 4.2 Mechanisms of Plant Disease Resistance, Invoked by PGPR of Bacillus spp.
      • 4.2.1 Synthesis by Bacillus PGPR antibiotic compounds
      • 4.2.2 Improvement of phosphoric and nitrogenous nutrition in plants
      • 4.2.3 Synthesis of siderophores
      • 4.2.4 Hydrolases as active components of Bacilli bacteria
      • 4.2.5 Synthesis of hormone-like compounds and signalling molecules
      • 4.2.6 Activation of the plant defence system
      • 4.2.7 Destruction of mycotoxins and increasing plant resistance against them
    • 4.3 Conclusion
    • Acknowledgements
    • References
  • 5: Biofilm Formation on Plant Surfaces by Rhizobacteria: Impact on Plant Growth and Ecological Significance
    • Abstract
    • 5.1 Introduction
    • 5.2 Processes in Biofilm Formation
      • 5.2.1 Initial attachment
      • 5.2.2 Irreversible attachment
      • 5.2.3 Microcolony formation
      • 5.2.4 Maturation
      • 5.2.5 Dispersion
    • 5.3 Ecological Significance of Biofilm Formation
      • 5.3.1 Defence
      • 5.3.2 Availability of nutrients to microbes
      • 5.3.3 Colonization
      • 5.3.4 Acquisition of new genetic traits
    • 5.4 Biofilms in the Rhizosphere
      • 5.4.1 Biofilm formation by PGPR
      • 5.4.2 Biofilm formation by phytopathogens
    • 5.5 Multi-species Biofilms in the Rhizosphere
      • 5.5.1 Role of bacterial signals in biofilm formation
    • 5.6 Role of Plant Root Exudates on Biofilms
    • 5.7 Biofilms in Relation to Plant Growth and Health Protection
      • 5.7.1 Role of biofilms in biocontrol of plant diseases
      • 5.7.2 Role of biofilms in mitigating stress in the rhizosphere
    • 5.8 Conclusion
    • Acknowledgement
    • References
  • 6: Biofilmed Biofertilizers: Application in Agroecosystems
    • Abstract
    • 6.1 Introduction
    • 6.2 Biofertilizers and theCommunity Approach of Microbes
    • 6.3 Role of BFBFs in Agroecosystems
    • 6.4 Fertilizing Potential of BFBFs
    • 6.5 Conclusion
    • Acknowledgements
    • References
  • 7: Microbial Nanoformulation: Exploring Potential for Coherent Nano-farming
    • Abstract
    • 7.1 Introduction
    • 7.2 Applications of Nanotechnology in Agriculture: Bridging the Gap
    • 7.3 Role of Various Microbes in the Synthesis of NPs
      • 7.3.1 Metallic NPs
      • 7.3.2 Oxide NPs
      • 7.3.3 Sulfide NPs
      • 7.3.4 Other NPs
    • 7.4 Possible Mechanisms for Antimicrobial Action of NPs Against Plant Pathogens
    • 7.5 Issues Related to Environmental Biosafety of Metal NPs
      • Forecasting severe threats
    • 7.6 Regulations for Nanotechnology
      • 7.6.1 European Union’s approach to regulating nanotechnology
      • 7.6.2 International standards for nanotechnology-based research
      • 7.6.3 International scenario on biosafety of nanoproducts
    • 7.7 Conclusions and Recommendations
    • Acknowledgements
    • References
  • 8: Bacillus thuringiensis: a Natural Tool in Insect Pest Control
    • Abstract
    • 8.1 Short Story of Bacillus thuringiensis
    • 8.2 Biodiversity of Toxin Proteins
    • 8.3 Mode of Action of Bacillus thuringiensis Cry Proteins
    • 8.4 B. thuringiensis Cry toxins as Bioinsecticide Products
    • 8.5 Development of Transgenic B. thuringiensis Crops
    • 8.6 Protein Engineering in B. thuringiensis Toxins
    • 8.7 Conclusion and Future Prospects
    • References
  • 9: Pleurotus as an Exclusive Eco-Friendly Modular Biotool
    • Abstract
    • 9.1 Introduction
    • 9.2 Historic Details of Pleurotus
    • 9.3 Biological Species of Pleurotus
    • 9.4 Pleurotus as a Modular Biotool
      • 9.4.1 Biotool for degradation and bioremediation
        • Degradation of lignocelluloses
        • Decolorization of textile dyes
        • Bioremediation of heavy metals
        • Degradation of pesticides
        • Degradation of herbicides
        • Degradation of explosives
        • Degradation of polycyclic aromatic hydrocarbons(PAH)
      • 9.4.2 Biotool for productionof multipurpose enzymes
        • Production of protease
        • Production of cellulase
        • Production of xylanase
        • Production of peroxidases
        • Production of laccase
      • 9.4.3 Biotool for production of food and food derivatives
        • Biotool producing single cell protein (SCP)
        • Biotool producing mushrooms
        • Biotool producing multivitamins
        • Biotool producing minerals
        • Biotool producing dietary fibres
      • 9.4.4 Biotool for production of medicinal products
        • Biotool producing antioxidants
        • Biotool producing polysaccharides
      • 9.4.5 Biotool for production of animal feed and fodder
      • 9.4.6 Biotool for production of compost
      • 9.4.7 Biotool for biobleaching
        • Biotool of pulp bleaching
        • Biotool of skin bleaching
    • 9.5 Conclusion
    • References
  • 10: Use of Biotechnology in Promoting Novel Food and Agriculturally Important Microorganisms
    • Abstract
    • 10.1 Introduction
    • 10.2 Role of Microbes in Agriculture and the Food Industry
      • 10.2.1 Biofertilizers and plant growth promoters
      • 10.2.2 Microbes as biotic stress managers
      • 10.2.3 Microbes as abiotic stress alleviators
      • 10.2.4 Microbes in food processing
        • Degradation of natural toxins
        • Biotransformation of mycotoxins
        • Novel microbial enzymes with wider adoptability and utility
    • 10.3 Biotechnology for Characterization of Agricultural Microbes
      • 10.3.1 Identification of microbes using 16S rRNA analysis
      • 10.3.2 Characterization of microbial genes useful in agriculture
      • 10.3.3 Targeted gene sequence
      • 10.3.4 Differential expression studies
      • 10.3.5 Genome sequencing
      • 10.3.6 Metagenomics for new beneficial inoculants
    • 10.4 Biotechnology to Enhance the Activity of Microorganisms Useful to Agriculture
      • 10.4.1 Protoplast fusion
      • 10.4.2 Genetic recombination
      • 10.4.3 Use of regulators for expression of microbial genes
    • 10.5 Concerns About the Use of GMMs
    • 10.6 Future Work
    • References
  • 11: Endophytes: an Emerging Microbial Tool for Plant Disease Management
    • Abstract
    • 11.1 Introduction
      • 11.1.1 Advantages of endophytes in plant disease management
      • 11.1.2 Biodiversity of endophytes
    • 11.2 Major Endophytic Microorganisms
      • 11.2.1 Fungal endophytes
      • 11.2.2 Bacterial endophytes
      • 11.2.3 Actinomycetes
        • Antimicrobial activity of endophytic actinomycetes
    • 11.3 Endophyte–Host Relationship
    • 11.4 Bioactivity of Endophytes
    • 11.5 Mechanisms of Action of Endophytes
      • 11.5.1 Direct parasitism
        • Antibiosis
        • Production of lytic enzymes
        • Detoxification and degradation of virulence factors
        • Hyperparasites and predation
      • 11.5.2 Indirect effects
        • Induction of plant resistance
        • Stimulation of plant secondary metabolites
        • Promotion of plant growth and physiology
        • Competition
    • 11.6 Endophytes: an Emerging Tool as Biocontrol Agents
      • 11.6.1 Potential endophytic antagonists
      • 11.6.2 Endophytes’ metabolites active against insects and nematodes
        • Insects
        • Nematodes
      • 11.6.3 Protocol for isolation of endophyticmicroorganisms
    • 11.7 Conclusion
    • References
  • 12: Role of Listeria monocytogenes in Human Health: Disadvantages and Advantages
    • Abstract
    • 12.1 Introduction
    • 12.2 Disadvantages and Advantages of the Bacterium
      • 12.2.1 Disadvantages
        • Food poisioning
        • Abortion
        • Meningitis
        • Other infections
      • 12.2.2 Advantages
        • L. monocytogenes as a live bacterial vaccine vector
        • L. monocytogenes in anti-cancer therapies
        • Treatment of infectious diseases
    • 12.3 Conclusion and Future Prospects
    • Acknowledgements
    • References
  • 13 Natural Weapons against Cancer from Bacteria
    • Abstract
    • 13.1 Introduction
    • 13.2 Anticancer Compounds from Marine Bacteria
    • 13.3 Anticancer Activities of Lactic Acid Bacteria (LAB)
    • 13.4 Anticancer Activities of Bacteriocins/Antimicrobial Peptides Isolated from Bacteria
    • 13.5 Conclusion
    • References
  • 14: Giardia and Giardiasis: an Overview of Recent Developments
    • Abstract
    • 14.1 Introduction
    • 14.2 Historical Background of Giardia
    • 14.3 Systemic Classification of Giardia
    • 14.4 Epidemiology
    • 14.5 Life Cycle
      • 14.5.1 Trophozoite structure
      • 14.5.2 Mitosome
      • 14.5.3 Cyst structure
    • 14.6 Molecular Biology
      • 14.6.1 Transfection
      • 14.6.2 Transcription and translation
    • 14.6.3 Tranposons
    • 14.7 The RNA Interference (RNAi) Pathway in Giardia
    • 14.8 Oxidative Stress
    • 14.9 Mode of Cell Death
    • 14.10 Immunology
      • 14.10.1 Humoral response
      • 14.10.2 Cell-mediated response
    • 14.11 Antigenic Variation
      • 14.11.1 Occurrence of antigenic variation
      • 14.11.2 Molecular mechanism in the control of antigenic variation
    • 14.12 Pathology and Pathogenesis
      • 14.12.1 Clinical features
      • 14.12.2 Diagnosis
        • Microscopic stool examination
        • Examination of intestinal fluid
        • Small bowel biopsy
        • Gastrointestinal radiology
        • Immunodiagnosis
        • DNA probe
        • Molecular diagnosis – nucleic acid detection methods
    • 14.13 Treatment of Giardiasis
      • 14.13.1 G. lamblia susceptibility towards aminoglycosides
      • 14.13.2 Susceptibility to nitroheterocyclic drugs
        • Mode of action of tinidazole
      • 14.13.3 Susceptibility to benzimidazoles
      • 14.13.4 Other agents
      • 14.14 Potential Drug Target Against Giardia
      • 14.15 Prevention of Giardiasis
    • References
  • 15: Power of Bifidobacteria in Food Applications for Health Promotion
    • Abstract
    • 15.1 Introduction
    • 15.2 The Bifidobacterium
      • 15.2.1 Taxonomy and general features
      • 15.2.2 Structure of the cell wall
      • 15.2.3 Oxygen tolerance
      • 15.2.4 Temperature and pH
      • 15.2.5 Metabolism of carbohydrates
      • 15.2.6 Sensitivity to antibiotics
    • 15.3 Microbial Ecosystem and Health Effects
      • 15.3.1 Gut microbiota
      • 15.3.2 Diarrhoea
      • 15.3.3 Inflammatory bowel diseases
      • 15.3.4 Allergenic diseases
      • 15.3.5 Cancer prevention
      • 15.3.6 Helicobacter pylori infection
      • 15.3.7 Lactose intolerance
    • 15.4 Bifidobacteria in Food Products
      • 15.4.1 Dairy-based matrices
        • Milk
        • Yoghurt
        • Cheese
        • Ice cream
      • 15.4.2 Non-dairy based matrices
        • Fruits and vegetables
        • Cereals
    • 15.5 Concluding Remarks
    • Acknowledgements
    • References
  • 16: Probiotics and Dental Caries: a Recent Outlook on Conventional Therapy
    • Abstract
    • 16.1 Introduction
    • 16.2 Dental Caries
    • 16.3 Potential of Probiotics for Prevention or Treatment of Dental Caries
    • 16.3.1 Using probiotics to replace the pathogenic flora
    • 16.4 Direct and Indirect Mechanisms of Probiotic Action
      • 16.4.1 Modulation of systemic immune system
      • 16.4.2 Effect on local immunity
      • 16.4.3 Effect on non-immunologic/non-specific defence mechanisms
      • 16.4.5 Prevention of plaque formation by neutralizing free electrons and production of antioxidants
      • 16.4.6 Probiotics change the environment
    • 16.5 Concluding Remarks and Future Directions
    • References
  • 17: Human Microbiota for Human Health
    • Abstract
    • 17.1 Introduction
    • 17.2 Distribution of Microbes in the Human Body
    • 17.3 Microbial Flora Acquired During Development
    • 17.4 Human Microbiota and Health
    • 17.5 Variation in the Human Microbiota
    • 17.6 Gut Microflora and Human Metabolism
    • 17.7 Horizontal Gene Transfer (HGT) Favours Bacterial Efficiency
    • 17.8 Microbiota and Disease
    • 17.9 Biotherapeutic Agents from Human Milk
    • 17.10 Microbiota and its Future in Wealth Generation
    • References
  • 18: Biotechnological Production of Polyunsaturated Fatty Acids
    • Abstract
    • 18.1 Introduction
    • 18.2 Microbial Metabolism for PUFA Production
    • 18.3 Oleaginous Microorganisms
    • 18.4 Production, Extraction and Chemical Characterization of Microbial Oil
      • 18.4.1 Production of Microbial Oil
      • 18.4.2 Extraction of Microbial Oil
      • 18.4.3 Chemical Characterization of Microbial Oil
    • 18.5 Microbial Oil’s Applications
    • 18.6 Future Trends
    • 18.7 Concluding Remarks
    • Acknowledgements
    • References
  • 19: Functional Enzymes for Animal Feed Applications
    • Abstract
    • 19.1 Introduction
    • 19.2 Application of Functional Enzymes in Animal Feeding
    • 19.3 Phytases (Chemical Abstracts Service (CAS) # 37288-11-2)
      • 19.3.1 Characterization and production of phytase
      • 19.3.2 Enzymatic hydrolysis of phytic acid
      • 19.3.3 Application of phytases in animal feed
    • 19.4 Xylanases (CAS # 9025-57-4)
      • 19.4.1 Classification and production
      • 19.4.2 Application in animal feed
    • 19.5 Future Trends
    • References
  • 20: Microbial Xylanases: Production, Applications and Challenges
    • Abstract
    • 20.1 Introduction
    • 20.2 Xylan: Composition and Structure
    • 20.3 Xylanases: Classification and Characteristics
      • 20.3.1 Endo-1,4-β-xylanases
      • 20.3.2 β-Xylosidases
      • 20.3.3 α-Arabinofuranosidases
      • 20.3.4 Acetylxylan esterase
      • 20.3.5 α-Glucuronidases
    • 20.4 Production of Xylanases
      • 20.4.1 Fungi
      • 20.4.2 Bacteria
    • 20.5 Production of Xylanases Under Solid State Fermentation (SSF) and Submerged Fermentation (SmF)
      • 20.5.1 Xylanase production by SmF
      • 20.5.2 Production of xylanase by SSF
    • 20.6 Biotechnological Applications
      • 20.6.1 Bioethanol production
      • 20.6.2 Animal feedstocks
      • 20.6.3 Xylanases in the pulp and paper industry
        • Pulp fibre morphology
        • Biobleaching of pulp
      • 20.6.4 Xylanases in the baking industry
      • 20.6.5 Fruit juice and beer clarification
      • 20.6.6 Improving silage
      • 20.6.7 Lignocellulosic bioconversions
      • 20.6.8 Xylanases in textile processing
      • 20.6.9 Bioenergy
    • 20.7 Xylanases: Challenges
    • 20.8 Conclusion and Future Prospects
    • References
  • 21: Microbial Chitinase: Production and Potential Applications
    • Abstract
    • 21.1 Introduction
    • 21.2 General Structure and Properties of Chitin
      • 21.2.1 α-Chitin
      • 21.2.2 β-Chitin
      • 21.2.3 γ-Chitin
    • 21.3 General Structure, Properties and Classification of Chitinase
    • 21.4 Source of Microbial Chitinase
      • 21.4.1 Bacterial chitinase
      • 21.4.2 Fungal chitinase
    • 21.5 Production of Chitinase
      • 21.5.1 Submerged fermentation (SmF) system
        • Carbon sources
        • Nitrogen sources
        • Metal ions
      • 21.5.2 Solid state fermentation (SSF) system
      • 21.5.3 Statistical optimization of chitinase production
      • 21.5.4 Purification of chitinase and its characterization
        • pH
        • Temperature
        • Metal ions and inhibitors
        • Molecular mass
    • 21.6 Applications of Chitinase
      • 21.6.1 Antifungal properties of chitinase
      • 21.6.2 Chitinases and transgenic plants
      • 21.6.3 Chitinases as a biopesticide
      • 21.6.4 Isolation of protoplasts
      • 21.6.5 Medical applications of chitinase
      • 21.6.6 Production of chito-oligosaccharides
      • 21.6.7 Chitinase as a mosquitocidal agent
      • 21.6.8 Chitinase as a nematicidal agent
      • 21.6.9 Treatment of chitinous waste
    • 21.7 Recent Patents and their Significance
    • References
  • 22: Characteristics of Microbial Inulinases: Physical and Chemical Bases of their Activity Regulation
    • Abstract
    • 22.1 Introduction
    • 22.2 Physical and Chemical Properties of Inulinases
    • 22.3 Correlation Between Amino Acid Sequences of Inulinases and their Physical and Chemical Properties
    • 22.4 Immobilization – One of the Ways of Regulating Inulinase Activity
    • 22.5 Mechanisms of Interaction between Inulinase and the Matrices of Ion Exchange Materials
    • 22.6 Conclusion
    • Acknowledgements
    • References
  • 23: Microbial Resources for Biopolymer Production
    • Abstract
    • 23.1 Introduction
    • 23.2 Biopolymer Production by Bacteria: Biosynthesis and Applications
      • 23.2.1 Bacterial cellulose (BC)
      • 23.2.2 Xanthan
      • 23.2.3 Polyhydroxyalkanoate (PHA)
      • 23.2.4 Summary of bacterial polymers
    • 23.3 Biopolymer Production by Fungi and Yeasts: Biosynthesis and Applications
      • 23.3.1 Chitin and chitosan
      • 23.3.2 Pullulan
      • 23.3.3 Glucan and the chitin–glucan complex (CGC)
      • 23.3.4 Summary of fungal polymers
    • 23.4 Final Remarks and Future Prospects
    • Acknowledgements
    • References
  • 24: Microbial Metabolites in the Cosmetics Industry
    • Abstract
    • 24.1 Introduction
    • 24.2 Microbially Produced CompatibleSolutes in Cosmetic Applications
      • 24.2.1 Ectoines
      • 24.2.2 Ectoines in the cosmetics industry
    • 24.3 Kojic Acid (CAS# 501-30-4)
      • 24.3.1 Characterization, preparation and application of kojic acid
    • 24.4 Botulinum Toxin (CAS# 93384-43-1)
    • 24.5 Microbial Polysaccharides
      • 24.5.1 Hyaluronic acid (HA) (CAS# 9004-61-9)
      • 24.5.2 Xanthan (CAS# 11138-66-2)
      • 24.5.3 Pullulan (CAS# 9057-02-7)
      • 24.5.4 Kefiran (CAS# 86753-15-3)
      • 24.5.5 Alginic acid (CAS# 9005-32-7)
    • 24.6 Medicinal Compounds from Mushrooms Used for Cosmetic Applications
      • 24.6.1 Mushroom cosmeceutical products
      • 24.6.2 Mushroom tyrosinase inhibitors
      • 24.6.3 Chitin–glucan
    • 24.7 Microbial Derivatives as FunctionalCosmetics
      • 24.7.1 Depigmenting material from microbialderivatives
      • 24.7.2 Functional cosmetics and photoageing caused by UVB irradiation
    • 24.8 Conclusion and Future Prospects
    • References
  • 25: Fungi of the Genus Pleurotus: Importance and Applications
    • Abstract
    • 25.1 Introduction
    • 25.2 Lignocellulosic Biomass
      • 25.2.1 Pleurotus production usingligno cellulosic biomass as a substrate
    • 25.3 Pleurotus Species
      • 25.3.1 Pleurotus ostreatus (Jacq.:Fr) Kummer
      • 25.3.2 Pleurotus florida Eger
      • 25.3.3 Pleurotus eryngii (DC.:Fr) Quel
      • 25.3.4 Pleurotus sajor-caju Fr.:Fr.
      • 25.3.5 Pleurotus cystidiosus O.K. Mill (P. abalonus Han, Chen & Cheng)
      • 25.3.6 Pleurotus cornucopiae (Paulet) Rolland
      • 25.3.7 Pleurotus djamor (Rumph. ex Fr.)
      • 25.3.8 Pleurotus pulmonarius (Fr.) Quél.
    • 25.4 Improvements to Pleurotus Strains
    • 25.5 Nutritional Importance of the Genus Pleurotus
    • 25.6 Medicinal and Therapeutic Properties of Pleurotus Species
      • 25.6.1 Antioxidants
      • 25.6.2 Hypocholesterolaemic agents
      • 25.6.3 Antitumour agents
      • 25.6.4 Importance of glucans
    • 25.7 Production of Industrial Enzymes by Pleurotus
      • 25.7.1 Oxidase enzymes
        • Manganese peroxidase (MnP)
        • Versatile peroxidase (VP)
        • Laccases
      • 25.7.2 Hydrolase enzymes
        • Cellulases
        • Xylanases
        • Proteases
    • 25.8 Bioremediation of Contaminated Soils and Water Using Pleurotus
    • 25.9 Conclusion
    • References
  • 26: Useful Microorganisms for Environmental Sustainability: Application of Heavy Metal Tolerant Consortia for Surface Water Decontamination in Natural and Artificial Wetlands
    • Abstract
    • 26.1 Introduction
    • 26.2 Study Case
    • 26.3 Methodology
      • 26.3.1 Toxicity test
      • 26.3.2 Reactors
      • 26.3.3 Inoculation of reactors 1 and 3
      • 26.3.4 Statistical analysis
    • 26.4 Results and Discussion
      • 26.4.1 Toxicity test
      • 26.4.2 Reactor experiment
      • 26.4.3 Heavy metals removal
        • Mercury removal
        • Lead removal
        • Chromium removal
    • 26.5 Conclusion
    • 26.6 Final Remarks
    • Acknowledgements
    • Note
    • References
  • 27: Exopolysaccharide (EPS)-producing Bacteria: an Ideal Source of Biopolymers
    • Abstract
    • 27.1 Introduction
      • 27.1.1 Gelling agent
      • 27.1.2 Medical applications
      • 27.1.3 Source of monosaccharides
      • 27.1.4 Emulsifiers
      • 27.1.5 Heavy metal removal
      • 27.1.6 Enhanced oil recovery
    • 27.2 Sources of EPS-producing Isolates
    • 27.3 Isolation of EPS-producing Bacteria
    • 27.4 EPS Recovery
    • 27.5 Quantification of EPS
    • 27.6 Purification of EPS
    • 27.7 Examples of Some CommerciallyUsed Bacterial EPS
      • 27.7.1 Dextran
      • 27.7.2 Xanthan gum
      • 27.7.3 Curdlan
    • References
  • 28: Microbial Process Development for Fermentation-based Biosurfactant Production
    • Abstract
    • 28.1 Introduction
    • 28.2 Biosurfactants
    • 28.3 Characteristics of Biosurfactants
    • 28.4 Fermentation Requirements
    • 28.5 Production of Biosurfactants
    • 28.6 Monitoring of Biosurfactant Production
    • 28.7 Downstream Processing of Biosurfactants
    • 28.8 General Applications of Biosurfactants
      • 28.8.1 Environmental applications
      • 28.8.2 Agricultural applications
      • 28.8.3 Food industry applications
      • 28.8.4 Cosmetic industry applications
      • 28.8.5 Application as antimicrobials
    • 28.9 Conclusion
    • References
  • 29: Recent Developments on Algal Biofuel Technology
    • Abstract
    • 29.1 Introduction
    • 29.2 Algal Growth
      • 29.2.1 Open ponds
      • 29.2.2 Photobioreactors (PBRs)
    • 29.3 Separation Techniques
      • 29.3.1 Flocculation
      • 29.3.2 Sedimentation
      • 29.3.3 Centrifugation
      • 29.3.4 Filtration
      • 29.3.5 Ultrasound
      • 29.3.6 Biologically based harvesting methods
    • 29.4 Drying Methods
    • 29.5 Lipid Extraction
      • 29.5.1 Supercritical CO2 extraction
      • 29.5.2 Electrical extraction
      • 29.5.3 Solvents
    • 29.6 Lipid Conversion
    • 29.7 Alternative Products
    • 29.8 Concerns, Limitations and Further Thoughts
    • References
  • 30: Microbial Lipases: Emerging Biocatalysts
    • Abstract
    • 30.1 Introduction
    • 30.2 Three-dimensional Structure of Bacterial Lipase Enzyme
    • 30.3 Mechanism of Lipolysis
    • 30.4 Lipase Production
    • 30.5 Secretion of Extracellular Lipase
    • 30.6 Applications of Bacterial Lipase
      • 30.6.1 Hydrolysis of oils and fats
      • 30.6.2 Interesterification of oils and fats
      • 30.6.3 Esterification of fatty acids
      • 30.6.4 Flavour development in dairy products
      • 30.6.5 Applications in the detergen tindustry
      • 30.6.6 Lipases in the food industry
      • 30.6.7 Lipases in biomedical applications
      • 30.6.8 Lipases in the synthesis of pesticides
      • 30.6.9 Lipases in the leather industry
      • 30.6.10 Lipases in environmental management
      • 30.6.11 Lipases in the cosmetics and perfume industry
    • 30.7 Conclusion
    • References
  • 31: Bioremediation of Gaseous and Liquid Hydrogen Sulfide Pollutants by Microbial Oxidation
    • Abstract
    • 31.1 Introduction
    • 31.2 Biological Conversion of Sulfide into Elemental Sulfur
    • 31.3 Sulfur-oxidizing Bacteria (SOB)
    • 31.4 Factors Affecting Sulfide Oxidation
      • 31.4.1 Effect of oxygen rate
      • 31.4.2 Effect of pH
      • 31.4.3 Effect of temperature
    • 31.5 Conclusion
    • References
  • 32: Archaea, a Useful Group for Unconventional Energy Production: Methane Production From Sugarcane Secondary Distillation Effluents Using Thermotolerant Strains
    • Abstract
    • 32.1 Introduction
    • 32.2 Theoretical Considerations
      • 32.2.1 Classification of living organisms
      • 32.2.2 Methanogenic archaea
      • 32.2.3 Main substrates used by methanogenic archaea
      • 32.2.4 Molecular tools and denaturing gradient gel electrophoresis (DGGE)
    • 32.3 Methodology
      • 32.3.1 Assessment of vinasses composition
      • 32.3.2 Upflow anaerobic sludge blanket (UASB) reactors
      • 32.3.3 Isolating, identifying and establishing the growth kinetics of methanogenic organisms
        • Selection of the optimum working dilution
        • General culture media incubation
        • Specific culture media incubation
        • Selective culture media incubation
        • Quantification using the most probable number (MPN) technique
        • Direct plate counting method
        • Growth kinetics for each selective culture medium
        • Confocal microscopy and scanning electron microscopy
      • 32.3.4 Molecular analysis of the methanogenic community composition
        • PCR amplification
        • DGGE
        • Reamplification, sequencing and phylogenetic analysis
    • 32.4 Results and Discussion
      • 32.4.1 Vinasses composition
      • 32.4.2 Identification and growth kinetics of methanogenic organisms
        • Archaea – traditional identification
        • Methanogenic archaea and SRO quantification using the MPN technique: growth kinetics
        • Comparison of data obtained in this study with previous data
      • 32.4.3 Molecular analysis of the methanogeniccommunity composition
        • Phylogenetic reconstructions for methanogenic archaea in the UASB reactors
    • 32.5 Concluding Remarks
    • Acknowledgements
    • Note
    • References
  • 33: Industrial Additives Obtained Through Microbial Biotechnology: Biosurfactants and Prebiotic Carbohydrates
    • Abstract
    • 33.1 Biotechnology: Useful Products for the Future of Industry
    • 33.2 Prebiotic Carbohydrates
      • 33.2.1 Chemical structure and types of non-digestibleoligosaccharides (NDOs)
      • 33.2.2 Technologies for the production of NDOs
        • Fructooligosaccharides (FOS)
        • Galactooligosaccharides (GOS)
        • Xylooligosaccharides (XOS)
      • 33.2.3 Main applications: research and industry
    • 33.3 Biosurfactants
      • 33.3.1 Production of biosurfactants from residues and application of statistical methods for process optimization
      • 33.3.2 Promising environmental applications of biosurfactants
    • 33.4 Concluding Remarks
    • Acknowledgements
    • References
  • 34: Industrial Additives Obtained Through Microbial Biotechnology: Bioflavours and Biocolourants
    • Abstract
    • 34.1 Biotechnology: Useful Products for the Future of Industry
    • 34.2 Bioflavours and Aroma Compounds Obtained by Microbial Biotechnology
      • 34.2.1 Bioflavours: microbial production and potential
    • 34.3 Biocolourants
      • 34.3.1 Biocolourants: microbial production and potential
    • 34.4 Trends and Prospects for New Industrial Additives
      • 34.4.1 Additives fitting the sensory trend
      • 34.4.2 Prospects for additives for the healthiness and wellness trend
    • 34.5 Advances in Biotechnology for New Industrial Additives
    • 34.6 Use of ‘Omics’ Tools in Searching for New Bioproducts
    • 34.7 Concluding Remarks
    • Acknowledgements
    • References
  • 35: Actinomycetes in Biodiscovery: Genomic Advances and New Horizons
    • Abstract
    • 35.1 Introduction
    • 35.2 Contributions of Actinomycetes to Biodiscovery
      • 35.2.1 Antibiotics: early years (1940–1974) to mid-era (1975–2000)
      • 35.2.2 New age (2001 onwards): genomics-inspired discovery of bioactive compounds
    • 35.3 Genome Mining
      • 35.3.1 Cryptic secondary metabolite pathways
      • 35.3.2 Diverse enzymology and biosynthetic pathways
      • 35.3.3 Polyketides and non-ribosomal peptides
      • 35.3.4 Ribosomal natural products
      • 35.3.5 Evolutionary systems biology
      • 35.3.6 Bioinformatics
      • 35.3.7 Extracellular microbial environment and metabolomics
      • 35.3.8 Microbiomics
      • 35.3.9 Target-directed screening for antibiotic activity
    • 35.4 Actinomycetes in Nature
      • 35.4.1 Natural roles of antibiotics
      • 35.4.2 Metagenomics
      • 35.4.3 Resistome concept in relation to antibiotic discovery
      • 35.4.4 Target-directed search and recovery of bioactive microorganisms
    • 35.5 Future Prospects
    • Acknowledgements
    • References
  • 36: Molecular Strategies for the Study of the Expression of Gene Variation by Real-time PCR
    • Abstract
    • 36.1 Introduction
    • 36.2 Theory of Real-time PCR
      • 36.2.1 Chemistry: types of fluorophores
      • 36.2.2 Strategies for RNA quantification by real-time PCR
        • Absolute quantification
        • Relative quantification
      • 36.2.3 Normalization
      • 36.2.4 Optimization of qPCR
      • 36.2.5 Applications
    • 36.3 Conditions for Quantification of Gene Expression of bgl-A, bgl and CspA from Shewanella sp. G5 Cultures
      • 36.3.1 Methods
        • Culture conditions
        • RNA extraction and cDNA synthesis
        • Design of oligonucleotide primers to detect b-glucosidase genes by conventional PCR
        • Real-time PCR assay
        • Standard curves and normalization
        • Relative quantification and data analysis
      • 36.3.2 Results and discussion
        • Analysis of designing primers for genes of interest
        • Primer evaluation by conventional PCR
        • Optimization of real-time PCR
        • Normalization with the reference gene and generation of standard curves
        • Relative quantification analyses applying the 2–ΔΔCt method
    • 36.4 Conclusion
    • References
  • 37: Whole Genome Sequence Typing Strategies for Enterohaemorrhagic Escherichia coli of the O157:H7 Serotype
    • Abstract
    • 37.1 Introduction
    • 37.2 Typing Methodologies and Resolution Power
      • 37.2.1 Multi-locus enzymeel ectrophoresis (MLEE) and sequencing typing
      • 37.2.2 Phage susceptibility assay
      • 37.2.3 Pulsed-field gel electrophoresis (PFGE)
      • 37.2.4 Metabolic typing
      • 37.2.5 Octamer-based genome scanning (OBGS) typing assay
      • 37.2.6 Multiple-locus variable-number tandem repeat analysis (MLVA)
      • 37.2.7 Shiga-toxin-producing bacteriophage insertion site typing (SBI)
      • 37.2.8 Lineage-specific polymorphism assay (LSPA)
      • 37.2.9 Whole genome mapping (WGM)
      • 37.2.10 Comparative genome hybridization
      • 37.2.11 Genome-wide association studies (GWAS)
    • 37.3 Historical View of E. coli O157:H7 Genomics
    • 37.4 Whole Genome Sequence Typing
    • 37.5 Impact of NGS Technologies
    • 37.6 Typing Isolates Based on the Virulence Complement
    • 37.7 Conclusions
    • Acknowledgements
    • References
  • 38: Microbial Keratinases: Characteristics, Biotechnological Applications and Potential
    • Abstract
    • 38.1 Introduction
    • 38.2 Characteristics and Properties of Keratinases
      • 38.2.1 Optimal pH and temperature
      • 38.2.2 Biochemical properties of keratinases
      • 38.2.3 Chemical properties of keratinases
      • 38.2.4 Keratinous substrates and their specificities
      • 38.2.5 Mechanism of keratinolysis
    • 38.3 Sources of Microbial Keratinases
    • 38.4 Optimization of Keratinase Production
    • 38.5 Established Applications of Keratinases
      • 38.5.1 Waste management
      • 38.5.2 Agroindustry
        • Animal feed and feed supplements
        • Fertilizers
      • 38.5.3 Leather and textile industry
      • 38.5.4 Consumer products
        • Detergent
        • Personal care products
      • 38.5.5 Pharmaceutical industry
      • 38.5.6 Prion decontamination
    • 38.6 Potential Applications of Keratinases
      • 38.6.1 Biological control
      • 38.6.2 Green energy
      • 38.6.3 Silk degumming
      • 38.6.4 Other applications
    • 38.7 Conclusion
    • References
  • 39: Philippine Fungal Diversity: Benefits and Threats to Food Security
    • Abstract
    • 39.1 Introduction
    • 39.2 The Genesis and Development of Philippine Mycology
    • 39.3 Case study 1: Biological Control of Plant Pathogens
    • 39.4 Case Study 2: Microbial Gifts for Agriculture
    • 39.5 Case Study 3. Breeding for Resistance Against Cereal Blast
    • 39.6 Case Study 4. Mycotoxins in Maize
    • References
  • Index
pdf/2415876.pdf

Access count: 2 
Last 30 days: 0

Detailed usage statistics

epub/2415876.epub

Access count: 1 
Last 30 days: 0

Detailed usage statistics