Details

Title De Gruyter studies in mathematics ;. — Interval Analysis. — v. 65. – 2017.
Creators Mayer Günter.
Imprint Berlin/Boston: De Gruyter, 2017
Collection Электронные книги зарубежных издательств ; Общая коллекция
Subjects Interval analysis (Mathematics) ; MATHEMATICS / Applied ; MATHEMATICS / Probability & Statistics / General ; EBSCO eBooks
Document type Other
File type PDF
Language English
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key ocn985959592
Record create date 5/5/2017

Allowed Actions

pdf/1504932.pdf
Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network
epub/1504932.epub
Action 'Download' will be available if you login or access site from another network
Group Anonymous
Network Internet
Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous
  • Preface
    • Contents
  • 1 Preliminaries
    • 1.1 Notations and basic definitions
    • 1.2 Metric spaces
    • 1.3 Normed linear spaces
    • 1.4 Polynomials
    • 1.5 Zeros and fixed points of functions
    • 1.6 Mean value theorems
    • 1.7 Normal forms of matrices
    • 1.8 Eigenvalues
    • 1.9 Nonnegative matrices
    • 1.10 Particular matrices
  • 2 Real intervals
    • 2.1 Intervals, partial ordering
    • 2.2 Interval arithmetic
    • 2.3 Algebraic properties, χ -function
    • 2.4 Auxiliary functions
    • 2.5 Distance and topology
    • 2.6 Elementary interval functions
    • 2.7 Machine interval arithmetic
  • 3 Interval vectors, interval matrices
    • 3.1 Basics
    • 3.2 Powers of interval matrices
    • 3.3 Particular interval matrices
  • 4 Expressions, P-contraction, ε-inflation
    • 4.1 Expressions, range
    • 4.2 P-contraction
    • 4.3 ε-inflation
  • 5 Linear systems of equations
    • 5.1 Motivation
    • 5.2 Solution sets
    • 5.3 Interval hull
    • 5.4 Direct methods
    • 5.5 Iterative methods
  • 6 Nonlinear systems of equations
    • 6.1 Newton method – one-dimensional case
    • 6.2 Newton method – multidimensional case
    • 6.3 Krawczyk method
    • 6.4 Hansen–Sengupta method
    • 6.5 Further existence tests
    • 6.6 Bisection method
  • 7 Eigenvalue problems
    • 7.1 Quadratic systems
    • 7.2 A Krawczyk-like method
    • 7.3 Lohner method
    • 7.4 Double or nearly double eigenvalues
    • 7.5 The generalized eigenvalue problem
    • 7.6 A method due to Behnke
    • 7.7 Verification of singular values
    • 7.8 An inverse eigenvalue problem
  • 8 Automatic differentiation
    • 8.1 Forward mode
    • 8.2 Backward mode
  • 9 Complex intervals
    • 9.1 Rectangular complex intervals
    • 9.2 Circular complex intervals
    • 9.3 Applications of complex intervals
  • Final Remarks
  • Appendix
    • A Jordan normal form
    • B Brouwer’s fixed point theorem
    • C Theorem of Newton–Kantorovich
    • D The row cyclic Jacobi method
    • E The CORDIC Algorithm
    • F The symmetric solution set
    • G INTLAB
  • Bibliography
  • Symbol Index
  • Author Index
  • Subject Index
pdf/1504932.pdf

Access count: 0 
Last 30 days: 0

Detailed usage statistics

epub/1504932.epub

Access count: 0 
Last 30 days: 0

Detailed usage statistics