Details

Title Natural language processing and computational linguistics: a practical guide to text analysis with Python, Gensim, spaCy, and Keras
Creators Srinivasa-Desikan Bhargav
Collection Электронные книги зарубежных издательств ; Общая коллекция
Subjects Natural language processing (Computer science) ; Computational linguistics. ; Machine learning. ; Python (Computer program language) ; COMPUTERS / General ; EBSCO eBooks
Document type Other
File type PDF
Language English
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key on1046682463
Record create date 7/31/2018

Allowed Actions

pdf/1841858.pdf
Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network
epub/1841858.epub
Action 'Download' will be available if you login or access site from another network
Group Anonymous
Network Internet
Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous
  • Cover
  • Copyright and Credits
  • Packt Upsell
  • Contributors
  • Table of Contents
  • Preface
  • Chapter 1: What is Text Analysis?
    • What is text analysis?
    • Where's the data at?
    • Garbage in, garbage out
    • Why should you do text analysis?
    • Summary
    • References
  • Chapter 2: Python Tips for Text Analysis
    • Why Python?
    • Text manipulation in Python
    • Summary
    • References
  • Chapter 3: spaCy's Language Models
    • spaCy
    • Installation
      • Troubleshooting
      • Language models
      • Installing language models
      • Installation – how and why?
      • Basic preprocessing with language models
    • Tokenizing text
      • Part-of-speech (POS) – tagging
      • Named entity recognition
      • Rule-based matching
      • Preprocessing
    • Summary
    • References
  • Chapter 4: Gensim – Vectorizing Text and Transformations and n-grams
    • Introducing Gensim
    • Vectors and why we need them
      • Bag-of-words
      • TF-IDF
      • Other representations
    • Vector transformations in Gensim
    • n-grams and some more preprocessing
    • Summary
    • References
  • Chapter 5: POS-Tagging and Its Applications
    • What is POS-tagging?
    • POS-tagging in Python
      • POS-tagging with spaCy
    • Training our own POS-taggers
    • POS-tagging code examples
    • Summary
    • References
  • Chapter 6: NER-Tagging and Its Applications
    • What is NER-tagging?
    • NER-tagging in Python
      • NER-tagging with spaCy
    • Training our own NER-taggers
    • NER-tagging examples and visualization
    • Summary
    • References
  • Chapter 7: Dependency Parsing
    • Dependency parsing
    • Dependency parsing in Python
    • Dependency parsing with spaCy
    • Training our dependency parsers
    • Summary
    • References
  • Chapter 8: Topic Models
    • What are topic models?
    • Topic models in Gensim
      • Latent Dirichlet allocation
      • Latent semantic indexing
        • Hierarchical Dirichlet process
      • Dynamic topic models
    • Topic models in scikit-learn
    • Summary
    • References
  • Chapter 9: Advanced Topic Modeling
    • Advanced training tips
    • Exploring documents
    • Topic coherence and evaluating topic models
    • Visualizing topic models
    • Summary
    • References
  • Chapter 10: Clustering and Classifying Text
    • Clustering text
    • Starting clustering
    • K-means
    • Hierarchical clustering
    • Classifying text
    • Summary
    • References
  • Chapter 11: Similarity Queries and Summarization
    • Similarity metrics
    • Similarity queries
    • Summarizing text
    • Summary
    • References
  • Chapter 12: Word2Vec, Doc2Vec, and Gensim
    • Word2Vec
      • Using Word2Vec with Gensim
    • Doc2Vec
    • Other word embeddings
      • GloVe
      • FastText
      • WordRank
      • Varembed
      • Poincare
    • Summary
    • References
  • Chapter 13: Deep Learning for Text
    • Deep learning
    • Deep learning for text (and more)
    • Generating text
    • Summary
    • References
  • Chapter 14: Keras and spaCy for Deep Learning
    • Keras and spaCy
    • Classification with Keras
    • Classification with spaCy
    • Summary
    • References
  • Chapter 15: Sentiment Analysis and ChatBots
    • Sentiment analysis
      • Reddit for mining data
      • Twitter for mining data
    • ChatBots
    • Summary
    • References
  • Other Books You May Enjoy
  • Index
pdf/1841858.pdf

Access count: 4 
Last 30 days: 0

Detailed usage statistics

epub/1841858.epub

Access count: 0 
Last 30 days: 0

Detailed usage statistics