Details
Title | Natural language processing and computational linguistics: a practical guide to text analysis with Python, Gensim, spaCy, and Keras |
---|---|
Creators | Srinivasa-Desikan Bhargav |
Collection | Электронные книги зарубежных издательств ; Общая коллекция |
Subjects | Natural language processing (Computer science) ; Computational linguistics. ; Machine learning. ; Python (Computer program language) ; COMPUTERS / General ; EBSCO eBooks |
Document type | Other |
File type | |
Language | English |
Rights | Доступ по паролю из сети Интернет (чтение, печать, копирование) |
Record key | on1046682463 |
Record create date | 7/31/2018 |
Allowed Actions
pdf/1841858.pdf | – |
Action 'Read' will be available if you login or access site from another network
Action 'Download' will be available if you login or access site from another network
|
---|---|---|
epub/1841858.epub | – |
Action 'Download' will be available if you login or access site from another network
|
Group | Anonymous |
---|---|
Network | Internet |
Network | User group | Action |
---|---|---|
ILC SPbPU Local Network | All |
|
Internet | Authorized users SPbPU |
|
Internet | Anonymous |
|
- Cover
- Copyright and Credits
- Packt Upsell
- Contributors
- Table of Contents
- Preface
- Chapter 1: What is Text Analysis?
- What is text analysis?
- Where's the data at?
- Garbage in, garbage out
- Why should you do text analysis?
- Summary
- References
- Chapter 2: Python Tips for Text Analysis
- Why Python?
- Text manipulation in Python
- Summary
- References
- Chapter 3: spaCy's Language Models
- spaCy
- Installation
- Troubleshooting
- Language models
- Installing language models
- Installation – how and why?
- Basic preprocessing with language models
- Tokenizing text
- Part-of-speech (POS) – tagging
- Named entity recognition
- Rule-based matching
- Preprocessing
- Summary
- References
- Chapter 4: Gensim – Vectorizing Text and Transformations and n-grams
- Introducing Gensim
- Vectors and why we need them
- Bag-of-words
- TF-IDF
- Other representations
- Vector transformations in Gensim
- n-grams and some more preprocessing
- Summary
- References
- Chapter 5: POS-Tagging and Its Applications
- What is POS-tagging?
- POS-tagging in Python
- POS-tagging with spaCy
- Training our own POS-taggers
- POS-tagging code examples
- Summary
- References
- Chapter 6: NER-Tagging and Its Applications
- What is NER-tagging?
- NER-tagging in Python
- NER-tagging with spaCy
- Training our own NER-taggers
- NER-tagging examples and visualization
- Summary
- References
- Chapter 7: Dependency Parsing
- Dependency parsing
- Dependency parsing in Python
- Dependency parsing with spaCy
- Training our dependency parsers
- Summary
- References
- Chapter 8: Topic Models
- What are topic models?
- Topic models in Gensim
- Latent Dirichlet allocation
- Latent semantic indexing
- Hierarchical Dirichlet process
- Dynamic topic models
- Topic models in scikit-learn
- Summary
- References
- Chapter 9: Advanced Topic Modeling
- Advanced training tips
- Exploring documents
- Topic coherence and evaluating topic models
- Visualizing topic models
- Summary
- References
- Chapter 10: Clustering and Classifying Text
- Clustering text
- Starting clustering
- K-means
- Hierarchical clustering
- Classifying text
- Summary
- References
- Chapter 11: Similarity Queries and Summarization
- Similarity metrics
- Similarity queries
- Summarizing text
- Summary
- References
- Chapter 12: Word2Vec, Doc2Vec, and Gensim
- Word2Vec
- Using Word2Vec with Gensim
- Doc2Vec
- Other word embeddings
- GloVe
- FastText
- WordRank
- Varembed
- Poincare
- Summary
- References
- Word2Vec
- Chapter 13: Deep Learning for Text
- Deep learning
- Deep learning for text (and more)
- Generating text
- Summary
- References
- Chapter 14: Keras and spaCy for Deep Learning
- Keras and spaCy
- Classification with Keras
- Classification with spaCy
- Summary
- References
- Chapter 15: Sentiment Analysis and ChatBots
- Sentiment analysis
- Reddit for mining data
- Twitter for mining data
- ChatBots
- Summary
- References
- Sentiment analysis
- Other Books You May Enjoy
- Index