Details

Title Learning geospatial analysis with Python: perform GIS processing tasks and remote sensing data analysis using Python 3.7. — Third edition.
Creators Lawhead Joel.
Imprint Birmingham: Packt Publishing, 2019
Collection Электронные книги зарубежных издательств ; Общая коллекция
Subjects Geospatial data. ; Python (Computer program language) ; EBSCO eBooks
Document type Other
File type PDF
Language English
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key on1122450412
Record create date 10/19/2019

Allowed Actions

pdf/2260655.pdf
Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network
epub/2260655.epub
Action 'Download' will be available if you login or access site from another network
Group Anonymous
Network Internet
Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous
  • Title Page
  • Copyright and Credits
  • Dedication
  • About Packt
  • Contributors
  • Table of Contents
  • Preface
  • Section 1: The History and the Present of the Industry
  • Chapter 1: Learning about Geospatial Analysis with Python
    • Technical requirements
    • Geospatial analysis and our world
    • History of geospatial analysis
    • GIS
    • Remote sensing
    • Elevation data
    • Computer-aided drafting
    • Geospatial analysis and computer programming
      • Object-oriented programming for geospatial analysis
    • The importance of geospatial analysis
    • GIS concepts
      • Thematic maps
      • Spatial indexing
      • Metadata
      • Map projections
      • Rendering
    • Remote sensing concepts
      • Images as data
      • Remote sensing and color
    • Common vector GIS concepts
      • Data structures
        • Geospatial rules about polygons
      • Buffer
      • Dissolve
      • Generalize
      • Intersection
      • Union
      • Join
    • Common raster data concepts
      • Band math
      • Change detection
      • Histogram
      • Feature extraction
      • Supervised and unsupervised classification
    • Creating the simplest possible Python GIS
      • Getting started with Python
      • Building a SimpleGIS
        • Setting up the data model
        • Rendering the map 
    • Summary
    • Further reading
  • Chapter 2: Learning Geospatial Data
    • Getting an overview of common data formats
    • Understanding data structures
      • Common traits
    • Understanding spatial indexing
      • Spatial indexing algorithms
        • Quadtree index
        • R-tree index
      • Grids
    • What are overviews?
    • What is metadata?
    • Understanding the file structure
    • Knowing the most widely used vector data types
      • Shapefiles
      • CAD files
      • Tag-based and markup-based formats
      • GeoJSON
      • GeoPackage
    • Understanding raster data types
      • TIFF files
      • JPEG, GIF, BMP, and PNG
      • Compressed formats
      • ASCII Grids
      • World files
    • What is point cloud data?
      • LIDAR
    • What are web services?
    • Understanding geospatial databases
    • Summary
    • Further reading
  • Chapter 3: The Geospatial Technology Landscape
    • Technical requirements
    • Understanding data access
      • GDAL
        • GDAL and raster data
        • GDAL and vector data
    • Understanding computational geometry
      • The PROJ projection library
      • CGAL
      • JTS
      • GEOS
      • PostGIS
      • Other spatially enabled databases
        • Oracle Spatial and Graph
        • ArcSDE
        • Microsoft SQL Server
        • MySQL
        • SpatiaLite
        • GeoPackage
      • Routing
        • Esri Network Analyst and Spatial Analyst
        • pgRouting
    • Understanding desktop tools (including visualization)
      • Quantum GIS
      • OpenEV
      • GRASS GIS
      • gvSIG
      • OpenJUMP
      • Google Earth
      • NASA WorldWind
      • ArcGIS
    • Understanding metadata management
      • Python's pycsw Library
      • GeoNode
      • GeoNetwork
    • Summary
    • Further reading
  • Section 2: Geospatial Analysis Concepts
  • Chapter 4: Geospatial Python Toolbox
    • Technical requirements
    • Installing third-party Python modules
    • Python virtualenv
    • Conda
    • Installing GDAL
      • Windows
      • Linux
      • macOS X
    • Python networking libraries for acquiring data
      • The Python urllib module
      • The Python requests module
      • FTP
    • ZIP and TAR files
    • Python markup and tag-based parsers
      • The minidom module
      • ElementTree
      • Building XML using ElementTree and Minidom
      • Well-Known Text (WKT)
    • Python JSON libraries
      • The json module
      • The geojson module
    • OGR
    • PyShp
    • dbfpy
    • Shapely
    • Fiona
    • ESRI shapefile
    • GDAL
    • NumPy
    • PIL
    • PNGCanvas
    • GeoPandas
    • PyMySQL
    • PyFPDF
    • Geospatial PDF
    • Rasterio
    • OSMnx
    • Jupyter
    • Conda
    • Summary
    • Further reading
  • Chapter 5: Python and Geographic Information Systems
    • Technical requirements
    • Measuring distance
      • Using the Pythagorean theorem
      • Using the haversine formula
      • Using the Vincenty formula
    • Calculating line direction
    • Understanding coordinate conversion
    • Understanding reprojection
    • Understanding coordinate format conversion
    • Calculating the area of a polygon
    • Editing shapefiles
      • Accessing the shapefile
        • Reading shapefile attributes
        • Reading shapefile geometry
      • Changing a shapefile
      • Adding fields
      • Merging shapefiles
        • Merging shapefiles with dbfpy
      • Splitting shapefiles
        • Subsetting spatially
      • Performing selections
        • The point-in-polygon formula
        • Bounding box selections
        • Attribute selections
    • Aggregating geometry
    • Creating images for visualization
      • Dot density calculations
      • Choropleth maps
      • Using spreadsheets
      • Creating heat maps
    • Using GPS data
    • Geocoding
    • Multiprocessing
    • Summary
  • Chapter 6: Python and Remote Sensing
    • Technical requirements
    • Swapping image bands
    • Creating histograms
    • Performing a histogram stretch
    • Clipping images
    • Classifying images
    • Extracting features from images
    • Understanding change detection
    • Summary
    • Further reading
  • Chapter 7: Python and Elevation Data
    • Accessing ASCII Grid files
      • Reading grids
      • Writing grids
    • Creating a shaded relief
    • Creating elevation contours
    • Working with LIDAR data
      • Creating a grid from the LIDAR data
      • Using PIL to visualize LIDAR data
      • Creating a triangulated irregular network
    • Summary
    • Further reading
  • Section 3: Practical Geospatial Processing Techniques
  • Chapter 8: Advanced Geospatial Python Modeling
    • Technical requirements
    • Creating a normalized difference vegetative index
      • Setting up the framework
      • Loading the data
      • Rasterizing the shapefile
      • Clipping the bands
      • Using the NDVI formula
      • Classifying the NDVI
      • Additional functions
      • Loading the NDVI
      • Preparing the NDVI
      • Creating classes
    • Creating a flood inundation model
      • The flood fill function
      • Predicting flood inundation
    • Creating a color hillshade
    • Performing least cost path analysis
      • The simple A* algorithm
      • Generating the test path
      • Viewing the test output
      • The real-world example
      • Loading the grid
      • Defining the helper functions
      • The real-world A* algorithm
      • Generating a real-world path
    • Converting the route to a shapefile
    • Routing along streets
    • Geolocating photos
    • Calculating satellite image cloud cover
    • Summary
  • Chapter 9: Real-Time Data
    • Technical requirements
    • Limitations of real-time data
    • Using real-time data
    • Tracking vehicles
      • The NextBus agency list
      • The NextBus route list
      • NextBus vehicle locations
      • Mapping NextBus locations 
    • Storm chasing
    • Reports from the field
    • Summary
  • Chapter 10: Putting It All Together
    • Technical requirements
    • Understanding a typical GPS report
    • Building a GPS reporting tool
      • Initial setup
      • Working with utility functions
      • Parsing the GPX
      • Getting the bounding box
      • Downloading map and elevation images
      • Creating the hillshade
      • Creating maps
      • Locating the photo
      • Measuring elevation
      • Measuring distance
      • Retrieving weather data
    • Summary
    • Further reading
  • Other Books You May Enjoy
  • Index
pdf/2260655.pdf

Access count: 0 
Last 30 days: 0

Detailed usage statistics

epub/2260655.epub

Access count: 0 
Last 30 days: 0

Detailed usage statistics