Details

Title: Нейросетевые методы и алгоритмы математического моделирования: учебное пособие для студентов высших учебных заведений, обучающихся по направлению подготовки магистров «Системный анализ и управление»
Creators: Васильев Александр Николаевич; Тархов Дмитрий Альбертович
Organization: Санкт-Петербургский государственный политехнический университет
Imprint: Санкт-Петербург: Изд-во Политехн. ун-та, 2014
Electronic publication: Санкт-Петербург, 2021
Collection: Учебная и учебно-методическая литература; Общая коллекция
Subjects: Нейронные сети; Математическое моделирование
UDC: 004.032.26(075.8); 519.8(075.8)
Document type: Tutorial
File type: PDF
Language: Russian
Speciality code (FGOS): 27.00.00
Speciality group (FGOS): 270000 - Управление в технических системах
DOI: 10.18720/SPBPU/2/si21-221
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Нейросетевая технология является одной из наиболее динамично развивающихся областей искусственного интеллекта. Она успешно применяется в различных прикладных областях. Обучение в магистратуре исследовательского университета подразумевает активную научную работу в выбранном направлении, что предполагает углубленное изучение студентами различных разделов курса «Методы искусственного интеллекта». В пособии изложен широкий круг тем, связанных с современными методами нейросетевого моделирования (включая стандартные и нестандартные постановки задач), что позволяет каждому студенту (вместе с научным руководителем) выбрать из предложенного материала необходимое лично ему. Большинство методов и алгоритмов разработано авторами и обладает приоритетной новизной. Данная методология существенно сокращает трудоемкость моделирования систем с распределенными параметрами. Предназначено для студентов высших учебных заведений, обучающихся по образовательной программе «Системный анализ и оптимизация информационных систем и технологий» направления подготовки магистров «Системный анализ и управление». Пособие может также использоваться при подготовке магистров по направлению «Информационные системы и технологии». Пособие может быть полезно в системах повышения квалификации, в учреждениях дополнительного профессионального образования.

Печатается по решению редакционно-издательского совета Санкт-Петербургского государственного политехнического университета.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users Read Print Download
-> Internet Anonymous

Table of Contents

  • ОГЛАВЛЕНИЕ
  • Введение
  • 1. Анализ состояния предметной области, постановка задач и описание основных моделей
  • 2. Структурные алгоритмы построения статических и динамических нейронных сетей
  • 3. Итерационные методы обучения нейронных сетей
  • 4. Применение статических нейронных сетей к построению приближённых решений эллиптических краевых задач на плоскости и в пространстве
  • 5. Принципы нейросетевого моделирования многокомпонентных систем с фиксированными границами подобластей
  • 6. Принципы нейросетевого моделирования многокомпонентных систем с переменными границами подобластей
  • 7. Построение приближённых нейросетевых моделей по разнородной информации
  • 8. Осцилляторные иейросетевые модели бесконечной размерности
  • Вместо заключения
  • Библиографический список

Usage statistics

stat Access count: 11
Last 30 days: 2
Detailed usage statistics