Details

Title Распознавание рукописного текста в программных системах с использованием нейронной сети: выпускная квалификационная работа бакалавра: 09.03.01 - Информатика и вычислительная техника ; 09.03.01_09 - Разработка программного обеспечения
Creators Аглиуллин Артур Науфалевич
Scientific adviser Круглов Сергей Константинович
Organization Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint Санкт-Петербург, 2018
Collection Выпускные квалификационные работы; Общая коллекция
Subjects нейрон; персептрон; искусственная нейронная сеть; графический символ
Document type Bachelor graduation qualification work
File type PDF
Language Russian
Level of education Bachelor
Speciality code (FGOS) 09.03.01
Speciality group (FGOS) 090000 - Информатика и вычислительная техника
Links Отзыв руководителя
DOI 10.18720/SPBPU/2/v18-5994
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key RU\SPSTU\edoc\58552
Record create date 11/30/2018

Allowed Actions

Action 'Read' will be available if you login or access site from another network

Action 'Download' will be available if you login or access site from another network

Group Anonymous
Network Internet

Объект исследования – искусственные нейронные сети. Предмет – способность распознавания рукописного текста нейронной сетью. Цель – создать искусственную нейронную сеть способную распознавать рукописные буквы. Теоретическое исследование проводилось методом анализа литературных источников и информационных ресурсов сети internet. По результатам исследования предложена архитектура сети и метод обучения для достижения поставленной цели. Выполнена программная реализация полносвязной искусственной нейронной сети прямого распространения. Получены результаты тестирования ПО, на основании которых можно судить о высокой способности сети классифицировать графические изображения букв. Итоги данной работы позволяют получить относительно точный, не ресурсоёмкий, простой инструмент для классификации рукописных символов и автоматического перевода их в машинный текст.

Network User group Action
ILC SPbPU Local Network All
Read Print Download
Internet Authorized users SPbPU
Read Print Download
Internet Anonymous

Access count: 186 
Last 30 days: 0

Detailed usage statistics