Details
Title | Прогнозирование котировок финансовых инструментов с помощью машинного обучения: выпускная квалификационная работа бакалавра: 09.03.04 - Программная инженерия ; 09.03.04_01 - Технология разработки и сопровождения качественного программного продукта |
---|---|
Creators | Ворошилов Максим Константинович |
Scientific adviser | Дробинцев Павел Дмитриевич |
Organization | Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий |
Imprint | Санкт-Петербург, 2019 |
Collection | Выпускные квалификационные работы ; Общая коллекция |
Subjects | машинное обучение ; прогнозирование ; регрессия ; котировки ; финансовые инструменты ; фондовый рынок ; machine learning ; prediction ; regression ; quotes ; financial instruments ; stock market |
Document type | Bachelor graduation qualification work |
File type | |
Language | Russian |
Level of education | Bachelor |
Speciality code (FGOS) | 09.03.04 |
Speciality group (FGOS) | 090000 - Информатика и вычислительная техника |
Links | Отзыв руководителя ; Отчет о проверке на объем и корректность внешних заимствований |
DOI | 10.18720/SPBPU/3/2019/vr/vr19-1330 |
Rights | Доступ по паролю из сети Интернет (чтение, печать, копирование) |
Record key | ru\spstu\vkr\1240 |
Record create date | 8/26/2019 |
Allowed Actions
–
Action 'Read' will be available if you login or access site from another network
Action 'Download' will be available if you login or access site from another network
Group | Anonymous |
---|---|
Network | Internet |
В данной выпускной квалификационной работе рассмотрены различные подходы к прогнозированию рынка ценных бумаг. Проведён обзор существующих решений на основе анализа научных статей. Исследование демонстрирует описание, разработку и тестирование линейной и полиномиальной регрессионных моделей, способных предсказывать цену закрытия фьючерса на индекс РТС. Полученные результаты являются точными при краткосрочных прогнозах.
In this study different approaches to predicting the stock market were considered. A review of existing solutions based on the analysis of scientific articles. The thesis work demonstrates the description, development and testing of linear and polynomial regression models that can predict the closing price of an RTS index futures. The results are accurate with short-term forecasts.
Network | User group | Action |
---|---|---|
ILC SPbPU Local Network | All |
|
Internet | Authorized users SPbPU |
|
Internet | Anonymous |
|
Access count: 64
Last 30 days: 0