Details

Title: Исследование применимости сверхмалых нейронных сетей на маломощных платформах в задаче видеоаналитики: выпускная квалификационная работа бакалавра: 15.03.06 - Мехатроника и робототехника ; 15.03.06_04 - Автономные роботы
Creators: Филатов Николай Сергеевич
Scientific adviser: Габриель Антон Сергеевич
Other creators: Чупров Сергей Геннадьевич
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт металлургии, машиностроения и транспорта
Imprint: Санкт-Петербург, 2019
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: глубокое обучение; нейронные сети; мобильный робот; сравнительный анализ архитектур; методы сжатия нейронных сетей; сверточные нейронные сети; deeplearning; neural networks; mobile robot; architecture analysis; neural networks compression; convolutional neural networks
Document type: Bachelor graduation qualification work
File type: PDF
Language: Russian
Speciality code (FGOS): 15.03.06
Speciality group (FGOS): 150000 - Машиностроение
Links: Отзыв руководителя; Рецензия; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2019/vr/vr19-778
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

В работе представлен аналитический обзор высокопроизводительных архитектур нейронных сетей, предназначенных для классификации и обнаружения объектов на изображениях, а также обзор методов сжатия нейронных сетей. Проведена оценка быстродействия одноэтапных нейросетевых детекторов SqueezeDet, Tiny-YOLO, YOLO, с использованием различного оборудования. Вычисления проводились на компьютере с графическим процессором Nvidia Ge Force GTX 1070, ноутбуке без графической карты, вычислителе Nvidia Jetson Tx2 и микрокомпьютере Raspberry Pi 3 Model B. Решена задача обнаружения деревянных кубов мобильным роботом.

The paper presents an analytical review of high-performance neural network architectures for classification and detection of objects in images, as well as an overview of neural network compression methods. The performance of one-stage neural network detectors SqueezeDet, Tiny-YOLO, YOLO was evaluated using various equipment. The calculations were carried out on a computer with a graphics processor Nvidia Ge Force GTX 1070, a laptop without a graphics card, a computer Nvidia Jetson Tx2 and a microcomputer Raspberry Pi 3 Model B. The problem of wooden cubes detection by a mobile robot is solved.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
Internet Authorized users SPbPU Read Print Download
Internet Authorized users (not from SPbPU)
-> Internet Anonymous

Table of Contents

  • ВВЕДЕНИЕ
  • 1 Математическое описание основных элементов сверточной нейронной сети
    • 1.1 Искусственный нейрон
    • 1.2 Сверточный слой
    • 1.3 Слой субдискретизации
    • 1.4 Слой нормализации батча
    • 1.5 Полносвязный слой
    • 1.6 Формулировка задач работы
    • 1.7 Вывод по разделу
  • 2 Методы сжатия и ускорения нейронных сетей
    • 2.1 Низкоранговое разложение (low rank factorization)
    • 2.2 Квантизация (quantization)
    • 2.3 Глубокое сжатие (Deep compression)
    • 2.4 Вывод по разделу
  • 3 Архитектуры высокопроизводительных нейронных сетей для классификации изображений
    • 3.1 Архитектура MobileNets
    • 3.2 Архитектура SqueezeNet
    • 3.3 Вывод по разделу
  • 4 Архитектуры высокопроизводительных нейронных сетей для обнаружения объектов на изображениях
    • 4.1 Архитектура SqueezeDet
    • 4.2 Сравнительный анализ SqueezeDet и YOLO
    • 4.3 Вывод по разделу
  • 5 Разработка системы технического зрения мобильного робота, проведение экспериментального исследования
    • 5.1 Постановка задачи и создание наборов данных
    • 5.2 Описание системы технического зрения
    • 5.2 Экспериментальное исследование
    • 5.3 Вывод по разделу
  • ЗАКЛЮЧЕНИЕ
  • СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Usage statistics

stat Access count: 51
Last 30 days: 0
Detailed usage statistics