Details

Title Hands-On Deep Learning for IoT: Train Neural Network Models to Develop Intelligent IoT Applications
Creators Razzaque Mohammad Abdur.; Karim Md. Rezaul
Imprint Birmingham: Packt Publishing, Limited, 2019
Collection Электронные книги зарубежных издательств; Общая коллекция
Subjects Internet of things.; EBSCO eBooks
Document type Other
File type PDF
Language English
Rights Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key on1107574315
Record create date 7/13/2019

Allowed Actions

pdf/2179553.pdf
Action 'Read' will be available if administrator prepare required files Action 'Download' will be available if you login or access site from another network
epub/2179553.epub
Action 'Download' will be available if you login or access site from another network
Group Anonymous
Network Internet

Reference; Chapter 2: Deep Learning Architectures for IoT; A soft introduction to ML; Working principle of a learning algorithm; General ML rule of thumb; General issues in ML models; ML tasks; Supervised learning; Unsupervised learning; Reinforcement learning; Learning types with applications; Delving into DL; How did DL take ML to the next level?; Artificial neural networks; ANN and the human brain; A brief history of ANNs; How does an ANN learn?; Training a neural network; Weight and bias initialization; Activation functions; Neural network architectures; Deep neural networks.

Network User group Action
ILC SPbPU Local Network All
Download
Internet Authorized users SPbPU
Download
Internet Anonymous
pdf/2179553.pdf

Access count: 0 
Last 30 days: 0

Detailed usage statistics

epub/2179553.epub

Access count: 0 
Last 30 days: 0

Detailed usage statistics