Details

Title: Генерация рецептов блюд на основе пищевого контекста: выпускная квалификационная работа магистра: направление 09.04.04 «Программная инженерия» ; образовательная программа 09.04.04_02 «Основы анализа и разработки приложений с большими объемами распределенных данных»
Creators: Полетова Надежда Валерьевна
Scientific adviser: Дробинцев Павел Дмитриевич
Other creators: Локшина Екатерина Геннадиевна
Organization: Санкт-Петербургский политехнический университет Петра Великого. Институт компьютерных наук и технологий
Imprint: Санкт-Петербург, 2021
Collection: Выпускные квалификационные работы; Общая коллекция
Subjects: Нейронные сети; рекомендательная система; еда; диета; word2vec; skip-gram; cbow; recommendation system; food; diet
UDC: 004.032.26; 613.2; 004.62
Document type: Master graduation qualification work
File type: PDF
Language: Russian
Level of education: Master
Speciality code (FGOS): 09.04.04
Speciality group (FGOS): 090000 - Информатика и вычислительная техника
Links: Отзыв руководителя; Рецензия; Отчет о проверке на объем и корректность внешних заимствований
DOI: 10.18720/SPBPU/3/2021/vr/vr21-885
Rights: Доступ по паролю из сети Интернет (чтение, печать, копирование)
Record key: ru\spstu\vkr\13324

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

Объектами данного исследования являются различные подходы и алгоритмы машинного обучения, которые можно использовать для создания рекомендательной системы блюд. Цель данной научной работы – создать собственную рекомендательную систему блюд на основе заданного контекста и исследовать возможности получившегося программного продукта. Рекомендательная система строится на нейронных сетях с одним скрытым слоем и принимающим на вход названия продуктов, в чем и заключается новизна данного подхода - опора на лексическое представление продуктов и использовании комбинации двух противоположных друг другу нейросетей формата word2veс. Полученные результаты в виде измененных под определенный запрос рецептов 78% из которых были оценены как успешно модифицированные, говорят о том, что данный способ имеет право на жизнь и может быть применен как вспомогательный инструмент для поваров или для людей, которые готовят по рецептам. На данный момент программный продукт находится на стадии доработки – несмотря на достаточно неплохой результат, есть вероятность, что процент успешных замен неподходящих пользователю продуктов увеличится с введением во входные параметры нейросети данных о нутриентах и пищевой ценности продуктов, так как сейчас же они учитываются алгоритмически.

The objects of this research are the different approaches and algorithms food recommendation system. The purpose of this scientific work is to create my own recommendation system of dishes based on a given context and explore the possibilities of this software product. The recommender system was built on neural networks with one hidden layer and wait product names as input, which is the novelty of this approach - reliance on the lexical representation of products and using a combination of two opposite neural networks of the word2veс format. The results were obtained in the form of recipes modified for a specific request, 78% of which were assessed as successfully modified, so this method has the right to life and can be used as an auxiliary tool for cooks or for people who cook according to recipes. As for now, the software product is being finalized - despite a good result, it is important to try increase the percentage of successful substitutions of products that are not suitable for the user with the introduction of data on nutrients and nutritional value of products into the input parameters of the neural network, since now they are taken into account algorithmically.

Document access rights

Network User group Action
ILC SPbPU Local Network All Read Print Download
External organizations N2 All Read
External organizations N1 All
Internet Authorized users SPbPU Read Print Download
Internet Authorized users (not from SPbPU, N2) Read
Internet Authorized users (not from SPbPU, N1)
-> Internet Anonymous

Usage statistics

stat Access count: 1
Last 30 days: 1
Detailed usage statistics